SIGNAL
Section: Linux Programmer's Manual (7) Updated: 2010-09-19 Index
Return to Main Contents
NAME
signal - overview of signals
DESCRIPTION
Linux supports both POSIX reliable signals (hereinafter
"standard signals") and POSIX real-time signals.
Signal Dispositions
Each signal has a current
disposition,
which determines how the process behaves when it is delivered
the signal.
The entries in the "Action" column of the tables below specify
the default disposition for each signal, as follows:
- Term
-
Default action is to terminate the process.
- Ign
-
Default action is to ignore the signal.
- Core
-
Default action is to terminate the process and dump core (see
core(5)).
- Stop
-
Default action is to stop the process.
- Cont
-
Default action is to continue the process if it is currently stopped.
A process can change the disposition of a signal using
sigaction(2)
or
signal(2).
(The latter is less portable when establishing a signal handler;
see
signal(2)
for details.)
Using these system calls, a process can elect one of the
following behaviors to occur on delivery of the signal:
perform the default action; ignore the signal;
or catch the signal with a
signal handler,
a programmer-defined function that is automatically invoked
when the signal is delivered.
(By default, the signal handler is invoked on the
normal process stack.
It is possible to arrange that the signal handler
uses an alternate stack; see
sigaltstack(2)
for a discussion of how to do this and when it might be useful.)
The signal disposition is a per-process attribute:
in a multithreaded application, the disposition of a
particular signal is the same for all threads.
A child created via
fork(2)
inherits a copy of its parent's signal dispositions.
During an
execve(2),
the dispositions of handled signals are reset to the default;
the dispositions of ignored signals are left unchanged.
Sending a Signal
The following system calls and library functions allow
the caller to send a signal:
- raise(3)
-
Sends a signal to the calling thread.
- kill(2)
-
Sends a signal to a specified process,
to all members of a specified process group,
or to all processes on the system.
- killpg(2)
-
Sends a signal to all of the members of a specified process group.
- pthread_kill(3)
-
Sends a signal to a specified POSIX thread in the same process as
the caller.
- tgkill(2)
-
Sends a signal to a specified thread within a specific process.
(This is the system call used to implement
pthread_kill(3).)
- sigqueue(2)
-
Sends a real-time signal with accompanying data to a specified process.
Waiting for a Signal to be Caught
The following system calls suspend execution of the calling process
or thread until a signal is caught
(or an unhandled signal terminates the process):
- pause(2)
-
Suspends execution until any signal is caught.
- sigsuspend(2)
-
Temporarily changes the signal mask (see below) and suspends
execution until one of the unmasked signals is caught.
Synchronously Accepting a Signal
Rather than asynchronously catching a signal via a signal handler,
it is possible to synchronously accept the signal, that is,
to block execution until the signal is delivered,
at which point the kernel returns information about the
signal to the caller.
There are two general ways to do this:
- *
-
sigwaitinfo(2),
sigtimedwait(2),
and
sigwait(3)
suspend execution until one of the signals in a specified
set is delivered.
Each of these calls returns information about the delivered signal.
- *
-
signalfd(2)
returns a file descriptor that can be used to read information
about signals that are delivered to the caller.
Each
read(2)
from this file descriptor blocks until one of the signals
in the set specified in the
signalfd(2)
call is delivered to the caller.
The buffer returned by
read(2)
contains a structure describing the signal.
Signal Mask and Pending Signals
A signal may be
blocked,
which means that it will not be delivered until it is later unblocked.
Between the time when it is generated and when it is delivered
a signal is said to be
pending.
Each thread in a process has an independent
signal mask,
which indicates the set of signals that the thread is currently blocking.
A thread can manipulate its signal mask using
pthread_sigmask(3).
In a traditional single-threaded application,
sigprocmask(2)
can be used to manipulate the signal mask.
A child created via
fork(2)
inherits a copy of its parent's signal mask;
the signal mask is preserved across
execve(2).
A signal may be generated (and thus pending)
for a process as a whole (e.g., when sent using
kill(2))
or for a specific thread (e.g., certain signals,
such as
SIGSEGV
and
SIGFPE,
generated as a
consequence of executing a specific machine-language instruction
are thread directed, as are signals targeted at a specific thread using
pthread_kill(3)).
A process-directed signal may be delivered to any one of the
threads that does not currently have the signal blocked.
If more than one of the threads has the signal unblocked, then the
kernel chooses an arbitrary thread to which to deliver the signal.
A thread can obtain the set of signals that it currently has pending
using
sigpending(2).
This set will consist of the union of the set of pending
process-directed signals and the set of signals pending for
the calling thread.
A child created via
fork(2)
initially has an empty pending signal set;
the pending signal set is preserved across an
execve(2).
Standard Signals
Linux supports the standard signals listed below.
Several signal numbers
are architecture-dependent, as indicated in the "Value" column.
(Where three values are given, the first one is usually valid for
alpha and sparc,
the middle one for ix86, ia64, ppc, s390, arm and sh,
and the last one for mips.
A - denotes that a signal is absent on the corresponding architecture.)
First the signals described in the original POSIX.1-1990 standard.
Signal | Value | Action | Comment
|
|
|
|
|
| | | or death of controlling process
|
SIGINT | 2 | Term | Interrupt from keyboard
|
SIGQUIT | 3 | Core | Quit from keyboard
|
SIGILL | 4 | Core | Illegal Instruction
|
SIGABRT | 6 | Core | Abort signal from abort(3)
|
SIGFPE | 8 | Core | Floating point exception
|
SIGKILL | 9 | Term | Kill signal
|
SIGSEGV | 11 | Core | Invalid memory reference
|
SIGPIPE | 13 | Term | Broken pipe: write to pipe with no
|
| | | readers
|
SIGALRM | 14 | Term | Timer signal from alarm(2)
|
SIGTERM | 15 | Term | Termination signal
|
SIGUSR1 | 30,10,16 | Term | User-defined signal 1
|
SIGUSR2 | 31,12,17 | Term | User-defined signal 2
|
SIGCHLD | 20,17,18 | Ign | Child stopped or terminated
|
SIGCONT | 19,18,25 | Cont | Continue if stopped
|
SIGSTOP | 17,19,23 | Stop | Stop process
|
SIGTSTP | 18,20,24 | Stop | Stop typed at tty
|
SIGTTIN | 21,21,26 | Stop | tty input for background process
|
SIGTTOU | 22,22,27 | Stop | tty output for background process
|
The signals
SIGKILL
and
SIGSTOP
cannot be caught, blocked, or ignored.
Next the signals not in the POSIX.1-1990 standard but described in
SUSv2 and POSIX.1-2001.
Signal | Value | Action | Comment
|
|
|
|
|
SIGPOLL | | Term | Pollable event (Sys V).
|
| | | Synonym for SIGIO
|
SIGPROF | 27,27,29 | Term | Profiling timer expired
|
SIGSYS | 12,31,12 | Core | Bad argument to routine (SVr4)
|
SIGTRAP | 5 | Core | Trace/breakpoint trap
|
SIGURG | 16,23,21 | Ign | Urgent condition on socket (4.2BSD)
|
SIGVTALRM | 26,26,28 | Term | Virtual alarm clock (4.2BSD)
|
SIGXCPU | 24,24,30 | Core | CPU time limit exceeded (4.2BSD)
|
SIGXFSZ | 25,25,31 | Core | File size limit exceeded (4.2BSD)
|
Up to and including Linux 2.2, the default behavior for
SIGSYS, SIGXCPU, SIGXFSZ,
and (on architectures other than SPARC and MIPS)
SIGBUS
was to terminate the process (without a core dump).
(On some other Unix systems the default action for
SIGXCPU and SIGXFSZ
is to terminate the process without a core dump.)
Linux 2.4 conforms to the POSIX.1-2001 requirements for these signals,
terminating the process with a core dump.
Next various other signals.
Signal | Value | Action | Comment
|
|
|
|
|
SIGEMT | 7,-,7 | Term |
|
SIGSTKFLT | -,16,- | Term | Stack fault on coprocessor (unused)
|
SIGIO | 23,29,22 | Term | I/O now possible (4.2BSD)
|
SIGCLD | -,-,18 | Ign | A synonym for SIGCHLD
|
SIGPWR | 29,30,19 | Term | Power failure (System V)
|
SIGINFO | 29,-,- | | A synonym for SIGPWR
|
SIGLOST | -,-,- | Term | File lock lost
|
SIGWINCH | 28,28,20 | Ign | Window resize signal (4.3BSD, Sun)
|
SIGUNUSED | -,31,- | Core | Synonymous with SIGSYS
|
(Signal 29 is
SIGINFO
/
SIGPWR
on an alpha but
SIGLOST
on a sparc.)
SIGEMT
is not specified in POSIX.1-2001, but nevertheless appears
on most other Unix systems,
where its default action is typically to terminate
the process with a core dump.
SIGPWR
(which is not specified in POSIX.1-2001) is typically ignored
by default on those other Unix systems where it appears.
SIGIO
(which is not specified in POSIX.1-2001) is ignored by default
on several other Unix systems.
Where defined,
SIGUNUSED
is synonymous with
SIGSYS
on most architectures.
Real-time Signals
Linux supports real-time signals as originally defined in the POSIX.1b
real-time extensions (and now included in POSIX.1-2001).
The range of supported real-time signals is defined by the macros
SIGRTMIN
and
SIGRTMAX.
POSIX.1-2001 requires that an implementation support at least
_POSIX_RTSIG_MAX
(8) real-time signals.
The Linux kernel supports a range of 32 different real-time
signals, numbered 33 to 64.
However, the glibc POSIX threads implementation internally uses
two (for NPTL) or three (for LinuxThreads) real-time signals
(see
pthreads(7)),
and adjusts the value of
SIGRTMIN
suitably (to 34 or 35).
Because the range of available real-time signals varies according
to the glibc threading implementation (and this variation can occur
at run time according to the available kernel and glibc),
and indeed the range of real-time signals varies across Unix systems,
programs should
never refer to real-time signals using hard-coded numbers,
but instead should always refer to real-time signals using the notation
SIGRTMIN+n,
and include suitable (run-time) checks that
SIGRTMIN+n
does not exceed
SIGRTMAX.
Unlike standard signals, real-time signals have no predefined meanings:
the entire set of real-time signals can be used for application-defined
purposes.
(Note, however, that the LinuxThreads implementation uses the first
three real-time signals.)
The default action for an unhandled real-time signal is to terminate the
receiving process.
Real-time signals are distinguished by the following:
- 1.
-
Multiple instances of real-time signals can be queued.
By contrast, if multiple instances of a standard signal are delivered
while that signal is currently blocked, then only one instance is queued.
- 2.
-
If the signal is sent using
sigqueue(2),
an accompanying value (either an integer or a pointer) can be sent
with the signal.
If the receiving process establishes a handler for this signal using the
SA_SIGINFO
flag to
sigaction(2)
then it can obtain this data via the
si_value
field of the
siginfo_t
structure passed as the second argument to the handler.
Furthermore, the
si_pid
and
si_uid
fields of this structure can be used to obtain the PID
and real user ID of the process sending the signal.
- 3.
-
Real-time signals are delivered in a guaranteed order.
Multiple real-time signals of the same type are delivered in the order
they were sent.
If different real-time signals are sent to a process, they are delivered
starting with the lowest-numbered signal.
(I.e., low-numbered signals have highest priority.)
By contrast, if multiple standard signals are pending for a process,
the order in which they are delivered is unspecified.
If both standard and real-time signals are pending for a process,
POSIX leaves it unspecified which is delivered first.
Linux, like many other implementations, gives priority
to standard signals in this case.
According to POSIX, an implementation should permit at least
_POSIX_SIGQUEUE_MAX
(32) real-time signals to be queued to
a process.
However, Linux does things differently.
In kernels up to and including 2.6.7, Linux imposes
a system-wide limit on the number of queued real-time signals
for all processes.
This limit can be viewed and (with privilege) changed via the
/proc/sys/kernel/rtsig-max
file.
A related file,
/proc/sys/kernel/rtsig-nr,
can be used to find out how many real-time signals are currently queued.
In Linux 2.6.8, these
/proc
interfaces were replaced by the
RLIMIT_SIGPENDING
resource limit, which specifies a per-user limit for queued
signals; see
setrlimit(2)
for further details.
Async-signal-safe functions
A signal handler function must be very careful,
since processing elsewhere may be interrupted
at some arbitrary point in the execution of the program.
POSIX has the concept of "safe function".
If a signal interrupts the execution of an unsafe function, and
handler
calls an unsafe function, then the behavior of the program is undefined.
POSIX.1-2004 (also known as POSIX.1-2001 Technical Corrigendum 2)
requires an implementation to guarantee that the following
functions can be safely called inside a signal handler:
_Exit()
_exit()
abort()
accept()
access()
aio_error()
aio_return()
aio_suspend()
alarm()
bind()
cfgetispeed()
cfgetospeed()
cfsetispeed()
cfsetospeed()
chdir()
chmod()
chown()
clock_gettime()
close()
connect()
creat()
dup()
dup2()
execle()
execve()
fchmod()
fchown()
fcntl()
fdatasync()
fork()
fpathconf()
fstat()
fsync()
ftruncate()
getegid()
geteuid()
getgid()
getgroups()
getpeername()
getpgrp()
getpid()
getppid()
getsockname()
getsockopt()
getuid()
kill()
link()
listen()
lseek()
lstat()
mkdir()
mkfifo()
open()
pathconf()
pause()
pipe()
poll()
posix_trace_event()
pselect()
raise()
read()
readlink()
recv()
recvfrom()
recvmsg()
rename()
rmdir()
select()
sem_post()
send()
sendmsg()
sendto()
setgid()
setpgid()
setsid()
setsockopt()
setuid()
shutdown()
sigaction()
sigaddset()
sigdelset()
sigemptyset()
sigfillset()
sigismember()
signal()
sigpause()
sigpending()
sigprocmask()
sigqueue()
sigset()
sigsuspend()
sleep()
sockatmark()
socket()
socketpair()
stat()
symlink()
sysconf()
tcdrain()
tcflow()
tcflush()
tcgetattr()
tcgetpgrp()
tcsendbreak()
tcsetattr()
tcsetpgrp()
time()
timer_getoverrun()
timer_gettime()
timer_settime()
times()
umask()
uname()
unlink()
utime()
wait()
waitpid()
write()
POSIX.1-2008 removes fpathconf(), pathconf(), and sysconf()
from the above list, and adds the following functions:
execl()
execv()
faccessat()
fchmodat()
fchownat()
fexecve()
fstatat()
futimens()
linkat()
mkdirat()
mkfifoat()
mknod()
mknodat()
openat()
readlinkat()
renameat()
symlinkat()
unlinkat()
utimensat()
utimes()
Interruption of System Calls and Library Functions by Signal Handlers
If a signal handler is invoked while a system call or library
function call is blocked, then either:
- *
-
the call is automatically restarted after the signal handler returns; or
- *
-
the call fails with the error
EINTR.
Which of these two behaviors occurs depends on the interface and
whether or not the signal handler was established using the
SA_RESTART
flag (see
sigaction(2)).
The details vary across Unix systems;
below, the details for Linux.
If a blocked call to one of the following interfaces is interrupted
by a signal handler, then the call will be automatically restarted
after the signal handler returns if the
SA_RESTART
flag was used; otherwise the call will fail with the error
EINTR:
-
- *
-
read(2),
readv(2),
write(2),
writev(2),
and
ioctl(2)
calls on "slow" devices.
A "slow" device is one where the I/O call may block for an
indefinite time, for example, a terminal, pipe, or socket.
(A disk is not a slow device according to this definition.)
If an I/O call on a slow device has already transferred some
data by the time it is interrupted by a signal handler,
then the call will return a success status
(normally, the number of bytes transferred).
- *
-
open(2),
if it can block (e.g., when opening a FIFO; see
fifo(7)).
- *
-
wait(2),
wait3(2),
wait4(2),
waitid(2),
and
waitpid(2).
- *
-
Socket interfaces:
accept(2),
connect(2),
recv(2),
recvfrom(2),
recvmsg(2),
send(2),
sendto(2),
and
sendmsg(2),
unless a timeout has been set on the socket (see below).
- *
-
File locking interfaces:
flock(2)
and
fcntl(2)
F_SETLKW.
- *
-
POSIX message queue interfaces:
mq_receive(3),
mq_timedreceive(3),
mq_send(3),
and
mq_timedsend(3).
- *
-
futex(2)
FUTEX_WAIT
(since Linux 2.6.22; beforehand, always failed with
EINTR).
- *
-
POSIX semaphore interfaces:
sem_wait(3)
and
sem_timedwait(3)
(since Linux 2.6.22; beforehand, always failed with
EINTR).
The following interfaces are never restarted after
being interrupted by a signal handler,
regardless of the use of
SA_RESTART;
they always fail with the error
EINTR
when interrupted by a signal handler:
-
- *
-
Socket interfaces, when a timeout has been set on the socket using
setsockopt(2):
accept(2),
recv(2),
recvfrom(2),
and
recvmsg(2),
if a receive timeout
(SO_RCVTIMEO)
has been set;
connect(2),
send(2),
sendto(2),
and
sendmsg(2),
if a send timeout
(SO_SNDTIMEO)
has been set.
- *
-
Interfaces used to wait for signals:
pause(2),
sigsuspend(2),
sigtimedwait(2),
and
sigwaitinfo(2).
- *
-
File descriptor multiplexing interfaces:
epoll_wait(2),
epoll_pwait(2),
poll(2),
ppoll(2),
select(2),
and
pselect(2).
- *
-
System V IPC interfaces:
msgrcv(2),
msgsnd(2),
semop(2),
and
semtimedop(2).
- *
-
Sleep interfaces:
clock_nanosleep(2),
nanosleep(2),
and
usleep(3).
- *
-
read(2)
from an
inotify(7)
file descriptor.
- *
-
io_getevents(2).
The
sleep(3)
function is also never restarted if interrupted by a handler,
but gives a success return: the number of seconds remaining to sleep.
Interruption of System Calls and Library Functions by Stop Signals
On Linux, even in the absence of signal handlers,
certain blocking interfaces can fail with the error
EINTR
after the process is stopped by one of the stop signals
and then resumed via
SIGCONT.
This behavior is not sanctioned by POSIX.1, and doesn't occur
on other systems.
The Linux interfaces that display this behavior are:
-
- *
-
Socket interfaces, when a timeout has been set on the socket using
setsockopt(2):
accept(2),
recv(2),
recvfrom(2),
and
recvmsg(2),
if a receive timeout
(SO_RCVTIMEO)
has been set;
connect(2),
send(2),
sendto(2),
and
sendmsg(2),
if a send timeout
(SO_SNDTIMEO)
has been set.
- *
-
epoll_wait(2),
epoll_pwait(2).
- *
-
semop(2),
semtimedop(2).
- *
-
sigtimedwait(2),
sigwaitinfo(2).
- *
-
read(2)
from an
inotify(7)
file descriptor.
- *
-
Linux 2.6.21 and earlier:
futex(2)
FUTEX_WAIT,
sem_timedwait(3),
sem_wait(3).
- *
-
Linux 2.6.8 and earlier:
msgrcv(2),
msgsnd(2).
- *
-
Linux 2.4 and earlier:
nanosleep(2).
CONFORMING TO
POSIX.1, except as noted.
BUGS
SIGIO
and
SIGLOST
have the same value.
The latter is commented out in the kernel source, but
the build process of some software still thinks that
signal 29 is
SIGLOST.
SEE ALSO
kill(1),
getrlimit(2),
kill(2),
killpg(2),
setitimer(2),
setrlimit(2),
sgetmask(2),
sigaction(2),
sigaltstack(2),
signal(2),
signalfd(2),
sigpending(2),
sigprocmask(2),
sigqueue(2),
sigsuspend(2),
sigwaitinfo(2),
abort(3),
bsd_signal(3),
longjmp(3),
raise(3),
sigset(3),
sigsetops(3),
sigvec(3),
sigwait(3),
strsignal(3),
sysv_signal(3),
core(5),
proc(5),
pthreads(7),
sigevent(7)
COLOPHON
This page is part of release 3.27 of the Linux
man-pages
project.
A description of the project,
and information about reporting bugs,
can be found at
http://www.kernel.org/doc/man-pages/.
Index
- NAME
-
- DESCRIPTION
-
- Signal Dispositions
-
- Sending a Signal
-
- Waiting for a Signal to be Caught
-
- Synchronously Accepting a Signal
-
- Signal Mask and Pending Signals
-
- Standard Signals
-
- Real-time Signals
-
- Async-signal-safe functions
-
- Interruption of System Calls and Library Functions by Signal Handlers
-
- Interruption of System Calls and Library Functions by Stop Signals
-
- CONFORMING TO
-
- BUGS
-
- SEE ALSO
-
- COLOPHON
-
This document was created by
man2html,
using the manual pages.
|